MTH 305: Practice assignment 2

1 Division algorithm

Establish the following assertions using the division algorithm.
(i) The square of any integer is either of the form $3 k$ or $3 k+1$.
(ii) The cube of any integer is of the form $7 k$ or $7 k \pm 1$.
(iii) For $n \geq 1, \frac{n(n+1)(2 n+1)}{6}$ is an integer.
(iv) The number $3 n^{2}-1$, for $n \in \mathbb{Z}$, is never a perfect square.
(v) No integer in the sequence

$$
11,111,1111,11111, \ldots
$$

is a perfect square.
(vi) When n is an odd integer, $n^{4}+4 n^{2}+11$ is of the form $16 k$.

2 Greatest common divisor

Establish the following assertions.
(i) $24 \mid\left(2 \cdot 7^{n}+3 \cdot 5^{n}-5\right)$, for $n \in \mathbb{Z}$.
(ii) If $a \in \mathbb{Z}$ is odd, then $32 \mid\left(a^{2}+3\right)\left(a^{2}+7\right)$
(iii) If $a, b \in \mathbb{Z}$ are odd, then $16 \mid\left(a^{4}+b^{4}-2\right)$.
(iv) For any $a \in \mathbb{Z}, \operatorname{gcd}(a, a+1)=1$.
(v) For any $a \in \mathbb{Z}, \operatorname{gcd}(5 a+2,7 a+3)=1$.
(vi) If $a \in \mathbb{Z}$ is odd, then $12 \mid\left(a^{2}+(a+2)^{2}+(a+4)^{2}+1\right)$.
(vii) If $a, b \in \mathbb{Z}$ are odd, then $8 \mid\left(a^{2}-b^{2}\right)$.
(viii) If $a \in \mathbb{Z}$, then $360 \mid a^{2}\left(a^{2}-1\right)\left(a^{2}-4\right)$.
(ix) In each of the following assume that $\operatorname{gcd}(a, b)=1$.
(a) If $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.
(b) If $c \mid a$, then $\operatorname{gcd}(b, c)=1$.
(c) $\operatorname{gcd}(a c, b)=\operatorname{gcd}(c, b)$.
(d) If $c \mid a+b$, then $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
(e) $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.
(x) If $d \mid n$, then $2^{d}-1 \mid 2^{n}-1$.

3 Euclid algorithm and Linear Diophantine equations

(i) In each of the following, find $\operatorname{gcd}(a, b)$ and express $\operatorname{gcd}(a, b)$ as a linear combination of a and b.
(a) $(a, b)=(24,138)$.
(b) $(a, b)=(119,272)$
(c) $(a, b)=(306,657)$
(ii) Establish the following assertions assuming that $\operatorname{gcd}(a, b)=1$.
(a) $\operatorname{gcd}(a+b, a-b)=1$ or 2
(b) $\operatorname{gcd}\left(a+b, a^{2}+b^{2}\right)=1$ or 2
(c) $\operatorname{gcd}\left(a+b, a^{2}-a b+b^{2}\right)=1$ or 3
(d) $\operatorname{gcd}\left(a^{n}, b^{n}\right)=1$
(e) $\operatorname{gcd}(a+b, a b)=1$
(iii) For nonzero integers a and b, establish the following assertions.
(a) $\operatorname{gcd}(a, b)=\operatorname{lcm}(a, b) \Longleftrightarrow a= \pm b$.
(b) $\operatorname{lcm}(k a, k b)=k \operatorname{lcm}(a, b)$.
(c) If $a \mid m$ and $b \mid m$, then $\operatorname{lcm}(a, b) \mid m$.
(iv) Let a, b, c be integers, no two of which are zero, and $d=\operatorname{gcd}(a, b, c)$.
(a) Show that

$$
d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))=\operatorname{gcd}(\operatorname{gcd}(a, c), b) .
$$

(b) Does a similar result as in (a) hold true if d is replaced with $\ell=$ $\operatorname{lcm}(a, b, c)$ and gcd is replaced with lcm? Explain.
(v) Determine whether the following Diophantine equations can be solved. If they have solutions, determine all possible solutions in the integers.
(a) $33 x+14 y=115$.
(b) $24 x+138 y=18$.
(c) $54 x+21 y=906$.
(d) $123 x+360 y=99$.
(vi) If a and b are relatively prime positive integers, then show that Diophantine equation $a x-b y=c$ has infinitely many solutions in the positive integers.

